Quiz 10 Chemical Engineering Thermodynamics April 2, 2020

The K-ratio is used to calculate the equilibrium distribution of a component in a mixture between vapor and liquid phases. We went through five methods to determine the *K*-ratio. For n-octane at 100°C at 0.1 MPa calculate the K-ratio:

- a) Using Raoult's Law and P_{sat} from:
 - -The Antoine equation;

Antoine Constants for n-Octane $P^{\text{sat}} = 10^{(A-B/(C+T))}$ A = 4.049; B = 1355; C = -63.63 (P = bar; T = K; For 326-400K NIST Webbook)

-The short-cut method;

The shot-cut parameters are available as critical parameters in the PREOS.xls . -Using PREOS.xls

- b) Calculate the *K*-ratio using the de Priester chart. (Show the chart in your answer.)
- c) Calculate the *K*-ratio using the fugacity of the liquid and the vapor phases from PREOS.xls and Equation 10-70. $v_i f_i^{\text{V}} = x_i f_i^{\text{L}}$
- d) Determine the bubble point temperature and the dew point temperature for a mixture of n-hexane, n-heptane, and n-octane in a 0.33:0.33:0.34 molar ratio at 0.1 MPa using the short-cut method.
- e) For an isothermal flash at 100°C and 0.1 MPa what is the V/F ratio, for the mixture of part d, and what are the compositions of the vapor and liquid products using the short-cut method?

Show screen shots of the Excel sheets where you use them.

	Antoine	Short-Cut	PREO.xls	de Priester	$f_{\mathrm{i}}^{\mathrm{L}}/f_{\mathrm{i}}^{\mathrm{V}}$
K _{n-octane}					

	T _{BubblePoint} °C	T _{DewPoint} °C	V/F 100°C
0.1 MPa			

	хi	yi
n-C6		
n-C7		
n-C8		

Quiz 10 Chemical Engineering Thermodynamics April 2, 2020

The K-ratio is used to calculate the equilibrium distribution of a component in a mixture between vapor and liquid phases. We went through five methods to determine the *K*-ratio. For n-octane at 100°C at 0.1 MPa calculate the K-ratio:

- a) Using Raoult's Law and P_{sat} from:
 - -The Antoine equation;
 - -The short-cut method;
 - -Using PREOS.xls
- b) Calculate the *K*-ratio using the de Priester chart. (Show the chart in your answer.)
- c) Calculate the *K*-ratio using the fugacity of the liquid and the vapor phases from PREOS.xls and Equation 10-70. $v_i f_i^{V} = x_i f_i^{L} f_i^{L}/f_i^{V}$
- d) Determine the bubble point temperature and the dew point temperature for a mixture of n-hexane, n-heptane, and n-octane in a 0.33:0.33:0.34 molar ratio at 0.1 MPa using the short-cut method.
- e) For an isothermal flash at 100°C and 0.1 MPa what is the V/F ratio, for the mixture of part d, and what are the compositions of the vapor and liquid products using the short-cut method?

Show screen shots of the Excel sheets where you use them.

	Antoine	Short-Cut	PREO.xls	de Priester	f_i^L/f_i^V	
K _{n-octane}	0.467	0.405	0,470	0.50	0.486	

	T _{BubblePoint} °C	T _{DewPoint} °C	V/F 100°C
0.1 MPa	105°C(378K)	90,20(3634)	0.646

	x i	yi
n-C6	0.173	0.416
n-C7	0.318	0.337
n-C8	0.509	0.247

Antoine Constants for n-Octane $P^{\text{sat}} = 10^{(A-B/(C+T))}$ A = 4.049; B = 1355; C = -63.63 (P = bar; T = K; For 326-400K NIST Webbook)

The shot-cut parameters are available as critical parameters in the PREOS.xls worksheet.

Dew Point Temperature

-								
	T, *C							
363.237081	90.23708116				Gas	T _c (K)	P _c (MPa)	ω
					n-HEXANE	507.4	3.012	0.30
		Dew Point Ter	mp		n-HEPTANE	540.3	2.736	0.34
zi	Ki	yi			n-OCTANE	568.8	2.486	0.39
0.33	1.863561579	0.61497532						
0.33	0.799392277	0.26379945						
0.34	0.356543833	0.1212249						
		0.99999968						
$= \frac{P_i^{sat}}{P} \approx \frac{P_{c,i} \cdot 10^{\frac{7}{3}}}{}$	$\frac{1+\omega)\left(1-\frac{1}{T_{r_i}i}\right)}{P}$ S	Shortcut K-ratio						
	363.237081 zi 0.33 0.33 0.34	T, °C 363.237081 90.23708116 zi Ki 0.33 1.863561579 0.33 0.799392277 0.34 0.356543833	T, *C 363.237081 90.23708116 Dew Point Ter yi 0.33 1.863561579 0.61497532 0.33 0.799392277 0.26379945 0.34 0.356543833 0.1212249	T, °C 363.237081 90.23708116 Dew Point Temp 2i Ki 0.33	T, *C 363.237081 90.23708116 Dew Point Temp yi 0.33 1.863561579 0.61497532 0.33 0.799392277 0.26379945 0.34 0.356543833 0.1212249 0.99999968	T, *C 363.237081 90.23708116 Dew Point Temp n-HEXANE 0.33 1.863561579 0.34 0.356543833 0.1212249 0.99999968 Gas n-HEXANE n-OCTANE 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	T, *C 363.237081 90.23708116 Dew Point Temp n-HEXANE 1.863561579 0.33 1.863561579 0.34 0.356543833 0.1212249 0.99999968 568.8 Gas T _c (K) n-HEXANE 507.4 n-HEPTANE 540.3 n-OCTANE 568.8 0.32 0.33 0.799392277 0.26379945 0.34 0.356543833 0.1212249 0.99999968	T, *C 363.237081 90.23708116 Gas T _c (K) P _c (MPa) n-HEXANE 507.4 3.012 n-HEPTANE 540.3 2.736 i Ki yi n-OCTANE 568.8 2.486 0.33 0.799392277 0.26379945 0.34 0.356543833 0.1212249 0.99999968

Bubble Point Temperature

		T, °C						
Temp, K	377.808075	104.8080752			Gas	T _c (K)	P _c (MPa)	ω
					n-HEXANE	507.4	3.012	0.305
			Dew Point Ten	np	n-HEPTANE	540.3	2.736	0.349
	zi	Ki	yi z	xi	n-OCTANE	568.8	2.486	0.396
C6	0.33	2.718877892		0.1213736				
C7	0.33	1.211525025		0.27238397				
C8	0.34	0.560832794		0.6062413				
			<u> </u>	0.99999887				
	$K_i = \frac{P_i^{sat}}{P}$	$P_{c,i} = \frac{\frac{7}{3}(1+\omega)(1-\omega)}{P}$	$-\frac{1}{T_{r_i}}$ Shortcut	K-ratio				

Isothermal Flash

Increase	Indent	Short-Cut	PREO.xls	de Priester	$f_i^{\mathrm{L}}/f_i^{\mathrm{V}}$	Gas	T. (K)	P _c (MPa)	w	
n-C6	out of range	2.41	2.42	2.3	2.29	n-HEXANE	507.4	3.012	0.305	
n-C7	out of range	1.06	1.05	1	1.05	n-HEPTANE	540.3	2.736	0.349	
n-C8	0.467	0.485	0.47	0.5	0.486	n-OCTANE	568.8	2.486	0.396	
						Gas	A	В	C	Range K
						n-HEXANE	4.003	1172	-48.78	286-343
						n-HEPTANE	4.028	1269	-56.2	299-373
						n-OCTANE	4.049	1355	-63.63	326-400
							P= Bar	T = K		