Quiz 10

Chemical Engineering Thermodynamics

April 2, 2020

The K-ratio is used to calculate the equilibrium distribution of a component in a mixture between vapor and liquid phases. We went through five methods to determine the K-ratio. For n-octane at $100^{\circ} \mathrm{C}$ at 0.1 MPa calculate the K-ratio:
a) Using Raoult's Law and $P_{\text {sat }}$ from:
-The Antoine equation;
Antoine Constants for n-Octane $\quad P^{\text {sat }}=10^{(A-B /(C+T))} \quad A=4.049 ; B=1355 ; C=-63.63$
(P = bar; T = K; For 326-400K NIST Webbook)
-The short-cut method;
The shot-cut parameters are available as critical parameters in the PREOS.xls . -Using PREOS.xls
b) Calculate the K-ratio using the de Priester chart. (Show the chart in your answer.)
c) Calculate the K-ratio using the fugacity of the liquid and the vapor phases from PREOS.xls and Equation 10-70.

$$
y_{\mathrm{i}} f_{\mathrm{i}}^{\mathrm{V}}=x_{\mathrm{i}} f_{\mathrm{i}}^{\mathrm{L}}
$$

d) Determine the bubble point temperature and the dew point temperature for a mixture of n -hexane, n -heptane, and n-octane in a 0.33:0.33:0.34 molar ratio at 0.1 MPa using the short-cut method.
e) For an isothermal flash at $100^{\circ} \mathrm{C}$ and 0.1 MPa what is the V / F ratio, for the mixture of part d, and what are the compositions of the vapor and liquid products using the short-cut method?

Show screen shots of the Excel sheets where you use them.

	Antoine	Short-Cut	PREO.xls	de Priester	$\boldsymbol{f}_{\mathbf{i}}^{\mathbf{L}} / \boldsymbol{f}_{\mathbf{i}}^{\mathbf{V}}$
$\boldsymbol{K}_{\text {n-octane }}$					

	$\boldsymbol{T}_{\text {BubblePoint }}{ }^{\circ} \mathbf{C}$	$\boldsymbol{T}_{\text {DewPoint }}{ }^{\circ} \mathbf{C}$	V/F $100^{\circ} \mathbf{C}$
$\mathbf{0 . 1 ~ M P a}$			

	$x \mathrm{i}$	$y \mathrm{i}$
$\mathrm{n}-\mathrm{C} 6$		
$\mathrm{n}-\mathrm{C} 7$		
$\mathrm{n}-\mathrm{C} 8$		

Quiz 10

Chemical Engineering Thermodynamics

April 2, 2020
The K-ratio is used to calculate the equilibrium distribution of a component in a mixture between vapor and liquid phases. We went through five methods to determine the K-ratio. For n-octane at $100^{\circ} \mathrm{C}$ at 0.1 MPa calculate the K-ratio:
a) Using Raoult's Law and $P_{\text {sat }}$ from:
-The Antoine equation;
-The short-cut method;
-Using PREOS.xls
b) Calculate the K-ratio using the de Priester chart. (Show the chart in your answer.)
c) Calculate the K-ratio using the fugacity of the liquid and the vapor phases from PREOS.xls and Equation 10-70. $\quad y_{\mathrm{i}} f_{\mathrm{i}}^{\mathrm{V}}=x_{\mathrm{i}} f_{\mathrm{i}}^{\mathrm{L}} \quad f_{\mathrm{i}}^{\mathrm{L}} / f_{\mathrm{i}}^{\mathrm{V}}$
d) Determine the bubble point temperature and the dew point temperature for a mixture of n-hexane, n -heptane, and n-octane in a 0.33:0.33:0.34 molar ratio at 0.1 MPa using the short-cut method.
e) For an isothermal flash at $100^{\circ} \mathrm{C}$ and 0.1 MPa what is the V / F ratio, for the mixture of part d, and what are the compositions of the vapor and liquid products using the short-cut method?

Show screen shots of the Excel sheets where you use them.

	Antoine	Short-Cut	PREO.xls	de Priester	$\boldsymbol{f}_{\mathbf{i}}^{\mathbf{L}} / \boldsymbol{f}_{\mathbf{i}}^{\mathbf{V}}$
$\boldsymbol{K}_{\text {n-octane }}$	0.467	0.485	0.470	0.50	0.486

	$\boldsymbol{T}_{\text {Bubblepoing }}{ }^{\circ} \mathrm{C}$	$\boldsymbol{T}_{\text {DewPoing }}{ }^{\circ} \mathrm{C}$	V/F $100^{\circ} \mathrm{C}$
0.1 MPa	$105^{\circ} \mathrm{C}(378 k)$	$90.2{ }^{\circ} \mathrm{C}(369 k)$	0.646

	$x \mathrm{i}$	$y \mathrm{i}$
$\mathrm{n}-\mathrm{C} 6$	0.173	0.416
$\mathrm{n}-\mathrm{C} 7$	0.318	0.337
$\mathrm{n}-\mathrm{C8}$	0.509	0.247

Antoine Constants for n-Octane $\quad P^{\text {sat }}=10^{(A-B /(C+T))} \quad A=4.049 ; B=1355 ; C=-63.63$

$$
(\mathrm{P}=\mathrm{bar} ; \mathrm{T}=\mathrm{K} \text {; For 326-400K NIST Webbook })
$$

The shot-cut parameters are available as critical parameters in the PREOS.xls worksheet.

Dew Point Temperature

Bubble Point Temperature

Isothermal Flash

Increase Indent		Short-Cut	PREO.xls	de Priester	$\boldsymbol{f}_{\mathrm{i}}^{\mathrm{L}} / \boldsymbol{f}_{\mathrm{i}}^{\mathbf{V}}$
n-C6	out of range	2.41	2.42	2.3	2.29
n-C7	out of range	1.06	1.05	1	1.05
n-C8	0.467	0.485	0.47	0.5	0.486

Gas	$\mathbf{T}_{\mathbf{c}}(\mathbf{K})$	$\mathbf{P}_{\mathbf{c}}(\mathbf{M P a})$	\mathbf{w}
n-HEXANE	507.4	3.012	0.305
n-HEPTANE	540.3	2.736	0.349
n-OCTANE	568.8	2.486	0.396

Gas	A	B	C	Range \mathbf{K}
n-HEXANE	4.003	1172	-48.78	$286-343$
n-HEPTANE	4.028	1269	-56.2	$299-373$
n-OCTANE	4.049	1355	-63.63	$326-400$
$\mathrm{P}=$ Bar				$\mathrm{T}=\mathrm{K}$

